

http://arpg-serv.ing2.uniroma1.it/arpg-site/

The Applied Radiation Physics Group

SERVIZIO SANITARIO REGIONALE

Istituto di Ricovero e Cura a Carattere Scientifico

Istituto in tecnologie avanzate e modelli assistenziali in oncologia

EMILIA-ROMAGNA Azienda Ospedaliera di Reggio Emilia Arcispedale S. Maria Nuova

Collaborations with bio-engineers, medicinal chemists, nuclear medicine physicians, oncologists, surgeons:

Fondazione IEO Istituto Europeo di Oncologia Policlinico Agostino Gemelli Università Cattolica del Sacro Cuore

Gemelli

LIMITS OF y-RGS

Long range of gamma's involve:

- exposure of medical personnel
- Background from healthy organs

Difficult to apply in:

- Brain tumors
- Abdominal tumors
- Pediatric tumors

http://arpg-serv.ing2.uniroma1.it/arpg-site/

WL: 2375 WW: 4751 From: 0 % (0.00) to: 30 % (4751.94) ≪ 98 px Y: 127 px Value: 25.03 ≪ -80.81 mm Y: -0.46 mm Z: -153.40 mm

robe

A Change In Paradigm

O Use of β⁻ tracers (electrons): pros

o Detect electrons that travels ~100 times less than γ

EXTEND RGS TO MORE

CLINICAL CASES

- Tracers with ⁹⁰Y can be used (already in therapy)
- No background from gamma
 - O Shorter time to have a response
 - Smaller administered activity
 - Ø Smaller and more versatile detector
 - O Very reduced effect of nearby healthy tissues
 - Ø Reduced dose to medical staff

http://arpg-serv.ing2.uniroma1.it/arpg-site/

E. Solfaroli Camillocci et al,

Sci. Repts. 4,4401 (2014)

http://arpg-serv.ing2.uniroma1.it/arpg-site/

Seeking collaboration

FI RADIO-GUIDED

SURGERY WITH B- DECAYS

PATENT PCT/IT2014/000025

- ⊘ To produce prototype certified for clinical tests. Current design:
 - P-terphenil crystal (avoid γ contamination)
 - O SiPM read-out (interaoperatively safe?)
- ⊘ To perform (pre-)clinical tests of new radio-tracers
 - Attach beta- emitting isotopes to working tracers
 - O Bio-kinetic tests
 - O Pre-clinical tests
 - Clinical tests

Real Action Party State

http://arpg-serv.ing2.uniroma1.it/arpg-site/

Feedback is welcome! Riccardo.faccini@roma1.infn.it

Daghighial et al 1994 Raylman et al 2001

Alternative: β^+ RGS

- Use of β⁺ decaying isotopes (same as PET)
 → detect positron (little penetration)
- Dual detectors for gamma background subtraction

- 2009 Bogalhas et al:
 - Test on phantom

This phantom also demonstrated the ability of the probe to detect tumour discs as small as 5 mm in diameter (20 mg) for tumour-to-background ratios higher than 3:1 and with an acquisition time around 4 s at each scanning step. These results indicate that our detector could be a useful complement to existing techniques for the accurate excision of brain tumour tissue and more generally to improve the efficiency of radio-guided cancer surgery. 10

Conclusions

FIRST APPLICATION

Collaboration with Ist. Neurologico C. Besta and IEO

- Cerebral Glio Blastoma
 - It's an aggressive cancer of brain cells, in which a complete resection of the neoplastic cells is crucial to raise the patient outcome
 - In this case *FDG* (the most common tracker) is useless, due to great glucosic avidity of normal brain tissue
 - the use of ⁹⁰Y bounded to *DOTATOC* can be much more specific to reveal residuals
 - <u>Peptide Receptor Radio Therapy</u> makes use of receptivity of brain tumors to somatostatin analogues
 - specificity already proved on Meningioma

- organic: low signal/low sensitivity to photons
- inorganic(most used in nucl.med.): high signal/high sensitivity to photons

R. Faccini et al, Properties of P-Terphenyl as detector for α , β , and γ radiation, IEEE Trans. on Nucl. Sci. 2014; 61: 1483-7 13

The First Prototype

Core: cylindrical scintillator of p-terphenyl d=2.1mm, h=1.7mm

encapsulated into a PVC ring to shield it against radiation coming from the sides;

inserted as a tip inside an easy handling aluminum body.

A thin black PVC cap makes the enclosure light tight.

Test with Phantoms

Cylindrical volumes filled with ⁹⁰Y in saline solution simulating tumoral remnants with millimetric dimensions

"RESIDUAL" compatible with residual well identified by NMR imaging \rightarrow useful as reference during further clinical tests;

"H1, H2, H3" same areas, but different heights to check the effect of the depth on the probe response.

Extension to the Real Case

- FLUKA simulation + DICOM PET scans to extrapolate from source rates to clinical case
- Acceptable risk level is achieved by balancing the falsepositive and false-negative probabilities: P(FalsePos)=1%, P (FalseNeg)<5%

PHANTOMS	d(mm)	h(mm)	V(ml)	t(s)@22kBq/ml	t(s)@5kBq/ml
RESIDUAL	6	3.5	0.10	1	2
H1	4	1	0.01	2	>10
H2	4	2	0.02	1	4
H3	4	3	0.04	1	4

Administered activity: 3

0.7 MBq/kg

Expected exposure of medical personnel

With FLUKA simulation we estimated that administering 3MBq/kg to the patient

- Surgeon's dose on hands: $1\mu\text{Sv/hr}$ (24x less than γ)
- Medical personnel dose: 0.13 $\mu \text{Sv/hr}$ (40x less than γ)

Spatial resolution

Scan at the edge of phantom (no signal after 2mm)

Short electron path length implies high locality:

- High spatial resolution
- Need for contact detection

DOTATOC uptake

- DOTATOC is a somatostatin analog → known receptivity from NET
- Use 68Ga-DOTATOC PET scans to estimate signal and background

ROI definition

meningioma

HG glioma

Statistical average of several ROIs

RGS for meningioma

Patient		W	Aadm	v	V _{NT}	t min	$A_{1s}^{min} \star \star$	Diagnosis	Previous
ID	Nles.	(kg)	(MBq)	(Hz)	(Hz)	(s)	(MBq/kg)		Treatment
M01	1	63	220	32.2	1.9	0.2	0.7	atypical	S
M02	1	80	160	17.6	2.6	0.6	1.9	atypical	S/RT/PRRT
M03	3	95	305	33.7	3.5	0.3	0.9	likely atypical	S/RT
				50.3	3.5	0.3	0.5		
				76.8	3.5	0.1	0.3		
M04	1	48	200	89.4	4.5	0.1	0.2	atypical	S/RT/CT
M05	3	57	130	66.7	4.4	0.2	0.3	relapse	S/RT/CT/PRRT
				53.2	4.4	0.2	0.5		
				57.6	4.4	0.2	0.4		
M06	2	90	145	107.6	1.8	0.1	0.1	unknown	PRRT
				56.1	1.8	0.2	0.4		
M07	1	74	237	50.2	3.9	0.2	0.5	anaplastic	S/RT
M08	3	105	223	55.7	3.6	0.2	0.5	atypical	S/RT
				31.2	3.6	0.2	0.9		
				29.6	3.6	0.4	0.9		
M09	2	48	145	13.4	2.4	0.9	2.7	atypical	S/RT
				15.1	2.4	0.7	2.5		
M10	1	70	240	14.6	1.2	0.6	1.8	atypical	S/RT
				12.6	1.2	0.8	1.9		
M11	1	75	220	12.7	3.8	1.6	5.0	atypical	unknown

- Very large uptake
- Can inject as low as 0.5 MBq/kg

* Time needed to detect 0.1 ml residual if 3MBq/kg are administered ** Activity that needs to be administered to achieve 1s response time

RGS for glioma

Patient	W	A _{adm} V	v_{NT}	t_{probe}^{min}	A_{1s}^{min} **	Diagnosis	Previous
ID	(kg)	(MBq) (H	z) (Hz)	(s)	(MBq/kg)		Treatment
G01	97	246 16.	5 1.4	0.5	1.5	HGG	S/RT/CT/PRRT
G02	68	223 5.1	2 1.1	2.6	8.5	HGG	RT/CT/B
G03	80	152 9.	5 1.9	1.4	4.3	HGG	S/RT/CT
G04	93	198 22.	4 3.7	0.6	1.8	HGG	S/RT/CT/PRRT
G05	90	192 4.	6 2.0	7.4	23.6	HGG	S/RT/CT/PRRT
G06	60	185 4.4	4 1.6	5.8	20.0	HGG	S/RT/CT
G07	63	194 4.	8 1.7	5.1	17.6	HGG	S/RT/CT
G08	70	266 2.	1 0.8	-	40.0	HGG	RT/CT
G09	85	255 3.	7 1.1	5.3	17.6	HGG	S/RT/CT
G10	80	224 2.1	2 1.6	-	-	oligodendroglioma	S/RT/CT/I
G11	70	234 5.	1 2.0	5.5	18.8	HGG	RT/CT
G12	15	38 5.	0 2.0	5.9	18.8	pontine glioma	RT/CT/PRRT

Needs to wait for ~6s, but it works
Margins to improve probe

* Time needed to detect 0.1 ml residual if 3MBq/kg are administered ** Activity that needs to be administered to achieve 1s response time

What next?

- Clinical tests on meningioma close to start (last bit of bureaucracy...)
- Further developments on probe:
 - Higher light collection efficiency
 - Matrix design for basic "imaging"
- Identify other clinical cases. Two classes:
 - There exists already a radio-tracer that carries ⁹⁰Y (for radiomethabolic therapy) or ⁶⁸Ga (PET)

Case 1 (existing tracer)

• Examples of known tracers

Radiopharmaceutical	Targeting mechanism	Indications
I-131 as iodide	Thyroid hormone synthesis	Differentiated thyroid carcinomas
I-131 Tositumomab	CD20 Antigen binding	Non-Hodgkin's lymphoma
Y-90 Ibritumomab tiuxetan	CD20 Antigen binding	Non-Hodgkin's lymphoma
Y-90 microspheres	Intravascular trapping	Liver metastasis Hepatocellular carcinoma
Sr-89 chloride	Calcium analogue	Bone pain palliation
Sm-153 EDTMP	Chemoadsorption	Bone pain palliation
Y-90 Octreotide	Somatostatin receptor binding	Neuroendocrine tumors
	Active transport into	Neuroblastoma Pheochromacytoma
I-131 MIBG	neuroendocrine cells and intracellular storage	Carcinoid Paraganglioma
		Medullary thyroid carcinoma

From PET or SPECT images we can estimate (with simulation) the tumor-noise-ratio

- Clinical tests "easy" to setup
- Possible candidates: glio-blastomas, NET (liver methastases, insulinoma,...)

Case 2

- Collaboration with chemists to develop new tracers ongoing
 - Still looking for molecular biologists
- Two classes of possible solutions
 - Radio-nuclides of interest

'Sr

'Sc

³¹Si

⁶⁹Zn

*2K

131

¹⁵³Sm

50d

1hr

2hr

1hr

12h

46h

8d

Y

Y

Y

Y

Ν

N

Ν

Conclusions (I)

- Radio-Guided surgery established with gamma probes:
 - Few types of tumor addressed
 - Developments towards:
 - Improved detection
 - New applications
- Extension to beta radio-tracers:
 - Little activity in the field:
 - Beta+ techniques suffer from background
 - Beta- techniques seem promising (low background, high locality):
 - 0.5 MBq/kg enough to detect 0.1ml residuals of meningioma
 - Surgeon dose <1µSv/hr
 - $\cdot \rightarrow$ extend field of application
- Collaborations are needed to extend application of our radio-guided-surgery technique:oncologists, medical physicists
 and nuclear physicians, molecular biologist and chemists

Conclusions (II)

- There is still room for improvement in Radio-Guided-Surgery
- Medical-oriented, devoted workshops with all the interested professional figures (like MEDAMI) are needed.

Mediterranean Thematic Workshops in Advanced Molecular Imaging

Bibliography: RGS and probes

- Radioguided Surgery: A Comprehensive Team Approach. [Mariani, G., Giuliano, A. E., Strauss, H.W. (eds)] (Springer, New York, 2006).
- Hoffman EJ, Tornai MP, Janecek M, Patt BE, and Iwanczyk JS.Intraoperative probes and imaging probes. Eur. J. Nucl. Med. 1999; 26: 913-935.
- Tsuchimochi M and Hayamaand K. Intraoperative gamma cameras for radioguided surgery: Technical characteristics, performance parameters, and clinical application. Phys. Med. 2013; 29: 126-38.
- Schneebaum S,, Even-Sapir E,, Cohen M, et al. Clinical applications of gamma-detection probes radioguided surgery. Eur. J. Nucl. Med. 1999; 26: S26-35.
- F. Daghighian et al., "Intraoperative beta probe: a device for detecting tissue labeled with positron or electron emitting isotopes during surgery," Med. Phys., no. 21, pp. 153-157, 1994.
- R. R. Raylman et al, Performance of a Dual, Solid-State Intraoperative Probe System with ¹⁸F, ^{99m}Tc, and ¹¹¹In, J Nucl Med 2001 42:352-360
- S. Yamamoto, K. Matsumoto, S. Sakamoto, et al, "An intra-operative positron probe with background rejection capability for fdg-guided surgery," Annals of nuclear medicine, vol. 19, no. 1, pp. 23–28, 2005.
- S. Bonzom, L. Ménard, S. Pitre, et al, "An Intraoperative Beta Probe Dedicated to Glioma Surgery : Design and Feasibility Study," IEEE Transactions on Nuclear Science, vol. 54, no. 30, pp. 30–41, 2007.
- F. Bogalhas, Y. Charon, M. A. Duval, et al, "Development of a positron probe for localization and excision of brain tumours during surgery.," Physics in medicine and biology, vol. 54, pp. 4439-53, July 2009.
 - Solfaroli Camillocci E, Baroni G, Bellini F, et al.. A novel radioguided surgery technique exploiting beta- decays. Sci.\ Rep. 2014; 4: 4401

Bibliography: specific applications

- Tiernan JP, Ansari I, Hirst NA, Millner PA, Hughes TA, Jayne DG. Intra-operative tumor detection and staging in colorectal cancer surgery. Colorectal Dis 2012; 14: 510-20.
- Filez L, Penninckx F, Ectors N, et al **Radioimmunoguided surgery for colorectal carcinoma** Hepatogastroenterology 26, 691-700 (1999)
- Manca G, Romanini A, Pellegrino D, et al. **Optimal detection of sentinel lymph node metastases by intraoperative** radioactive threshold and molecular analysis in patients with melanoma. J. Nucl. Med. 2008; 49: 1769-75.
- Angarita FA, Nadler A, Zerhouni S, Escallon J. Perioperative measures to optimize margin clearance in breast conserving surgery. Surg Oncol 2014; 23: 81-91.
- De Cicco C, Cremonesi M, Luini A, et al. Lymphoscintigraphy and radioguided biopsy of the sentinel axillary node in breast cancer. J. Nucl. Med. 1998; 39: 2080-4.
- Terzioglu T, Senyurek YG, Tunca F, et al. Excision efficiency of radioguided occult lesion localization in reoperative thyroid and parathyroid surgery. Thyroid. 2010; 20: 1271-8.
- Gulec SA, Baum R. Radioguided Surgery in Neuroendocrine Tumors Using Ga-68-Labeled Somatostatin Analogs. J. Surg. Onc. 2007; 96: 309-15.
- Kaemmerer D, Prasad V, Daffner W, et al. Radio-Guided Surgery in Neuroendocrine Tumors. Clin. Nucl. Med. 2012; 37: 142-7.

Detectors

Commercial products in continuous development

